0.9 м/с соответственно.

Выполненные экспериментальные исследования позволяют установить взаимосвязь между скоростью изнашивания сопряжений аксиально-поршневых насосов гидроприводов спецтехники и режимами нагружения как при электростатической обработке РЖ, так и без таковой. Однако их результаты не дают возможности прогнозирования ресурса сопряжений насосов, поскольку для этого требуются дополнительные исследования, заключающиеся в изучении развития процесса изнашивания во времени. Для этого целесообразно провести стендовые испытания насосов спецтехники в условиях электростатической обработки РЖ.

1.Косолапов В.Б. Повышение эксплуатационной надежности гидроприводов строительных и дорожных машин при воздействии внешнего электрического поля на рабочую жидкость: Дисс. ... канд. техн. наук. – Харьков, 1995. – 212 с.

2. Лысиков Е.Н. Влияние электростатической обработки рабочих жидкостей на интенсивность износа пар трения гидроприводов // Вестник ХГАДТУ. Вып. 12-13. — Харьков: ХГАДТУ, 2000. — С. 75-78.

Получено 19.03.2007

УДК 531

В.П.ОЛЬШАНСКИЙ, д-р физ.-матем. наук Харьковский национальный технический университет сельского хозяйства

С.В.ОЛЬШАНСКИЙ

Национальный технический университет «Харьковский политехнический институт»

К РАСЧЕТУ МАКСИМАЛЬНОЙ ВЫСОТЫ ВЫБРОСА КАПЕЛЬ, ИСПАРЯЮЩИХСЯ ПРИ ПОЛЕТЕ

Получены компактные формулы для приближенного расчета максимальной высоты подъема испаряющейся капли, получившей в некоторый момент времени заданную вертикальную скорость. Приемлемая точность предложенных решений подтверждена в ходе сравнения результатов расчета с помощью приближенного аналитического и численного решений.

Вычисление граничной высоты подъема (выброса) испаряющейся капли представляет практический интерес при проектировании систем пожаротушения, при решении задач экологии, связанных с прогнозированием размеров области возможного загрязнения окружающей среды, при рассмотрении вопросов безопасности жизнедеятельности человека в окрестности источников потенциальных выбросов вредных распыленных жидкостей и др. Различные модели баллистики испаряющихся капель огнетушащих веществ рассматривались в работах [1, 2]. Но там не затрагивались вопросы расчета максимальной высоты выброса испаряющейся капли, представляющие интерес в экологии и

безопасности жизнедеятельности человека. Поэтому исследование особенностей движения жидких, а также твердых частиц, меняющих свою массу в ходе полета, относится к актуальным задачам.

Основные соотношения для расчета скорости полета. Как и в работе [3], текущий радиус капли r, которую считаем сферовидным телом, берем в виде линейной функции времени t

$$r = r(t) = r_0 - \gamma t ,$$

где γ — параметр, характеризующий скорость убывания размера тела за счет испарения. Отсчет времени t проводим с момента вертикального истечения капли с начальной скоростью υ_0 . Силу аэродинамического сопротивления движению принимаем пропорциональной произведению площади миделевого сечения капли на квадрат скорости ее лвижения.

При таких предположениях в работе [3] получена следующая зависимость скорости подъема капли v(t) от времени полета

$$\upsilon(t) = \frac{\tau}{2\beta_0} \frac{J_1(\tau) + cY_1(\tau)}{J_0(\tau) + cY_0(\tau)}.$$
 (1)

Здесь
$$\beta_0 = \beta \gamma^{-1}$$
; $\tau = 2\sqrt{g_1(r_0 - \gamma t)}$; $\tau_0 = 2\sqrt{g_1 r_0}$; $g_1 = \frac{g\beta}{\gamma^2}$;

$$c = \frac{\tau_0 J_1(\tau_0) - 2\beta_0 v_0 J_0(\tau_0)}{2\beta_0 v_0 Y_0(\tau_0) - \tau_0 Y_1(\tau_0)};$$
(2)

 $J_{0}(\tau)$, $J_{1}(\tau)$ – функции Бесселя; $Y_{0}(\tau)$, $Y_{1}(\tau)$ – функции Неймана; β – приведенный коэффициент аэродинамического сопротивления; g – ускорение свободного падения; $r_{0} = r(0)$.

В момент достижения максимальной высоты подъема $t=t_{\Pi}$ скорость $\upsilon(t_{\Pi})\!=\!0$. Определение времени t_{Π} , согласно (1), сводится к решению трансцендентного уравнения

$$J_1(\tau) + cY_1(\tau) = 0, \qquad (3)$$

причем нужно знать корень, который попадает в интервал $0 < \tau < \tau_0$. Этот корень зависит от значения c .

При малых c, когда $c < c^* = 7,73 \cdot 10^{-3}$, корень оказывается меньшим 0,1 и его можно приближенно найти по формуле

$$\tau \approx 2\sqrt{c/\pi}$$
.

К ней приводит замена цилиндрических функций в (3) их асимптотическими представлениями для малых значений аргумента [4].

Если начальные параметры истечения капли таковы, что вычисленное по формуле (2) $c>c^*$, то корень уравнения (3) можно приближенно находить с помощью табл.1, в которой записаны значения $L=-\ln |c|$ для различных τ .

τ	L	τ	L	τ	L	τ	L
0,10	4,862	1,05	0,483	2,00	-1,684	2,95	-0,140
0,15	4,066	1,10	0,394	2,05	-1,980	3,00	-0,043
0,20	3,509	1,15	0,306	2,10	-2,398	3,05	0,053
0,25	3,082	1,20	0,220	2,15	-3,121	3,10	0,150
0,30	2,738	1,25	0,135	2,20	-5,923	3,15	0,249
0,35	2,452	1,30	0,050	2,25	-3,004	3,20	0,350
0,40	2,207	1,35	-0,036	2,30	-2,335	3,25	0,454
0,45	1,993	1,40	-0,123	2,35	-1,934	3,30	0,564
0,50	1,804	1,45	-0,212	2,40	-1,644	3,35	0,680
0,55	1,634	1,50	-0,302	2,45	-1,416	3,40	0,805
0,60	1,481	1,55	-0,396	2,50	-1,226	3,45	0,942
0,65	1,340	1,60	-0,494	2,55	-1,062	3,50	1,094
0,70	1,210	1,65	-0,598	2,60	-0,916	3,55	1,267
0,75	1,089	1,70	-0,708	2,65	-0,784	3,60	1,470
0,80	0,975	1,75	-0,826	2,70	-0,663	3,65	1,720
0,85	0,868	1,80	-0,956	2,75	-0,549	3,70	2,046
0,90	0,766	1,85	-1,099	2,80	-0,441	3,75	2,527
0,95	0,668	1,90	-1,263	2,85	-0,338	3,80	3,475
1,00	0,574	1,95	-1,453	2,90	-0,238		<u> </u>

Таблица 1 - 3ависимость L от корней уравнения (3)

В табл.1 при $\tau \le 2,15 - c > 0$, а при $t \ge 2,20 - c < 0$.

После определения au легко вычислить время движения капли вверх $t_{\scriptscriptstyle H}$ по формуле

$$t_{II} = \frac{1}{\gamma} \left(r_0 - \frac{\tau^2}{4g_1} \right). \tag{4}$$

Проведем такие вычисления при $r_0=10^{-3}\,\mathrm{m};~\upsilon_0=50\,\mathrm{m/c};~$ $\beta=10^{-5}\,;~\gamma=2\cdot10^{-4}\,\mathrm{m/c}.$ Для них $c=4,454\,;~L=-1,494$. По табл.1, с привлечением линейной интерполяции, находим $\tau\approx1,970$, а затем по формуле $(4)-t_{II}\approx3,022\,\mathrm{c}.$

Основные соотношения для расчета максимальной высоты выброса капли. Определение этой высоты связано с вычислением интеграла

$$H = \int_{0}^{t_{B}} v(x) dx, \qquad (5)$$

который "не берется" аналитически. Поэтому рассмотрим варианты приближенного вычисления квадратуры.

Следуя работе [3], введем асимптотическое представление скорости

$$v_a(t) = \left[\frac{1}{v_0} - \beta_0 \ln\left(1 - \frac{\gamma t}{r_0}\right)\right]^{-1} \tag{6}$$

и разложим (5) на сумму двух слагаемых

$$H = H_a + \Delta H , \qquad (7)$$

где
$$H_a = \int_0^{t_R} v_a(x) dx$$
; $\Delta H = \int_0^{t_R} \left[v(x) - v_a(x) \right] dx$.

Первое слагаемое в (7) выражается с помощью интегральной показательной функции Ei(-u). Согласно [3]

$$H_a = \frac{r_0}{\beta} \exp(u_1) \left[Ei(-u_2) - Ei(-u_1) \right], \tag{8}$$

причем
$$u_1 = \left(\upsilon_0 \beta_0\right)^{-1}$$
; $u_2 = u_1 - \ln \left(1 - \frac{\gamma \cdot t_{II}}{r_0}\right)$.

При малых размерах капель разность $\upsilon(t)-\upsilon_a(t)$ мала. Второе слагаемое ΔH существенно меньше H_a и его можно приближенно определить по формуле Симпсона

$$\Delta H \approx \frac{t_{\Pi}}{6} \left[4v \left(\frac{t_{\Pi}}{2} \right) - 4v_{a} \left(\frac{t_{\Pi}}{2} \right) - v_{a} \left(t_{\Pi} \right) \right]. \tag{9}$$

Погрешность вычисления ΔH не существенно ухудшает точность вычисления H , поскольку $H_a >> \Delta H$.

Второй способ приближенного определения H более прост в вычислительном отношении. Он базируется на идее усреднения, согласно которой движение частицы переменной массы условно заменяется движением сферического тела постоянного радиуса, который на-

ходится путем усреднения его значения на интервале движения. Таким образом, используя формулу максимальной высоты подъема сферы постоянной массы [5], с учетом изложенного, получаем

$$H = \frac{\gamma \cdot t_{\Pi}}{8\beta} \left[\left(1 + \frac{4q}{\gamma \cdot t_{\Pi}} \right) \ln \left(1 + \frac{1}{\Omega} \right) - \frac{1}{1 + \Omega} \right], \tag{10}$$

где
$$q=r_0-rac{1}{2}\gamma\cdot t_{_{I\!I}}\,,\;\Omega=rac{qg}{eta v_{_0}^2}\,.$$

Формула (10) позволяет оценить H , если известно время движения частицы $t_{\scriptscriptstyle H}$.

Численные результаты и их анализ. Сравним величины H, полученные численным интегрированием квадратуры (5), со значениями, к которым приводят формулы (7) и (10). При этом примем следующие исходные данные: $r_0 = 10^{-3}$ м; $\gamma = 2 \cdot 10^{-4}$ м/с; $\beta = 10^{-5}$. Вычисленные H записаны в табл.2.

Таблица 2 – Максимальные высоты выброса капли *H*, полученные для различных начальных скоростей разными способами

v_0 , M/c	t_{π} ,c	Н, м			
		численное интегрирование (5)	по формуле (7)	по формуле (10)	
40	2,731	46,123	46,039	46,080	
50	3,042	59,455	59,634	59,296	
60	3,217	71,423	71,593	71,164	

Результаты в табл. 2 свидетельствуют о хорошей точности формул (7) и (10).

Рассмотрим, как влияет интенсивность испарения капли на максимальную высоту выброса. Для этого примем прежние исходные данные и v_0 =40 м/с.

Таблица 3 - Максимальные высоты выброса капли H, полученные для различных скоростей испарения

$\gamma_{\rm , M/c}$	t_{II} ,c	Н, м			
, ,,,,,		численное интегрирование (5)	по формуле (7)	по формуле (10)	
$1,5 \cdot 10^{-4}$	2,777	46,740	46,713	46,593	
$3 \cdot 10^{-4}$	2,728	44,743	45,066	45,169	

Таким образом, уменьшение скорости испарения увеличивает максимальную дальность полета выброшенной капли.

В целом расчет максимальной высоты выброса частицы по изло-

женной методике связан с вычислением значений функций Бесселя и интегральной показательной функции, что удобно выполнять с помощью таблиц, имеющихся в [4, 6] и другой литературе по специальным функциям.

- 1.Ольшанський В.П., Ольшанський С.В., Ларін О.М., Фомін Є.М. Балістика крапель розпилених вогнегасних рідин. Біла Церква, 2006. 124 с.
- 2. Кучеренко С.І., Ольшанський В.П., Ольшанський С.В., Тіщенко Л.М. Моделювання польоту крапель, які випаровуються при русі в газі. Харків: Едена, 2006. 203 с.
- 3.Ольшанский В.П., Ольшанский С.В. Нижняя оценка дальности полета испаряющихся капель распыленных огнетушащих веществ // Науковий вісник будівництва. Вып.35. Харків: ХДТУБА, 2006. С.188-193.
- 4. Абрамовиц А., Стиган И. Справочник по специальным функциям (с формулами, графиками и математическими таблицами). М.: Наука, 1979. 832 с.
- 5.Ольшанский В.П., Дубовик О.А. Вопросы внешней баллистики огнетушащих веществ. Харьков: Митець, 2005. 236 с.
 - 6. Янке Е., Эмде Ф., Леш Ф. Специальные функции. – М.: Наука, 1977. – 344 с.

Получено 19.03.2007

УДК 614.842

Ю.В.ЦАПКО, канд. техн. наук

Черкаський інститут пожежної безпеки ім. Героїв Чорнобиля МНС України

ДОСЛІДЖЕННЯ УМОВ ФЛЕГМАТИЗУВАННЯ АЗОТОМ СУМІШЕЙ ПОВІТРЯ З ПРОДУКТАМИ ПІРОЛІЗУ ЦЕЛЮЛОЗОВМІСНИХ МАТЕРІАЛІВ

Наводяться результати досліджень концентраційних меж поширення полум'я в разі флегматизування азотом горючих сумішей продуктів піролізу целюлозовмісних матеріалів з повітрям. Обґрунтовуються параметри флегматизування горючого середовища з метою забезпечення вибухопожежобезпеки об'єктів азотом, який одержують за мембранною технологією розділення повітря.

Причиною пожеж у складських приміщеннях є займання газоподібних продуктів термічної і термоокислювальної деструкції (водню, метану, оксиду вуглецю та ін.), які утворюються у процесі нагрівання целюлозовмісних матеріалів. Ефективним способом захисту таких об'єктів є флегматизування газового середовища шляхом введення достатньої кількості газової вогнегасної речовини (ГВР) — азоту, діоксиду вуглецю тощо. Розрахунок цієї кількості має базуватися на значенні мінімальної флегматизувальної концентрації ($C_{\text{мф}}$) даної ГВР для газових сумішей повітря з продуктами деструкції матеріалу, який зберігається на об'єкті.

Термічну деструкцію целюлози (деревина, фанера, папір та ін.) супроводжує хімічне окиснення, що прискорюється значним підвищенням температури. В результаті цих процесів отримується